1. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: An updated review. Cont Lens Anterior Eye. 2022;45(3):101559. 

2. Salomão M, Hoffling-Lima AL, Lopes B, Belin MW, Sena N, Dawson DG, et al. Recent developments in keratoconus diagnosis. Expert Review of Ophthalmology. 2018;13(6):329-41. 

3. Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: A review. Contact Lens and Anterior Eye. 2010;33(4):157-66. 

4. Moshirfar M, Tukan AN, Bundogji N, Liu HY, McCabe SE, Ronquillo YC, et al. Ectasia After Corneal Refractive Surgery: A Systematic Review. Ophthalmol Ther. 2021;10(4):753-76. Page 13/17 

5. Ambrósio R, Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, et al. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. Journal of Refractive Surgery. 2017;33(7):434-43. 

6. Roberts CJ, Dupps WJ, Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40(6):991-8. 

7. Esporcatte LPG, Salomão MQ, Lopes BT, Sena N, Ferreira É, Filho JBRF, et al. Biomechanics in Keratoconus Diagnosis. Current Eye Research. 2022:1-7. 

8. Bao F, Geraghty B, Wang Q, Elsheikh A. Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important? Eye and Vision. 2016;3(1):18. 

9. Yang K, Xu L, Fan Q, Zhao* D, Ren* S. Repeatability and comparison of new Corvis ST parameters in normal and keratoconus eyes. Scientific Reports. 2019;9(1):15379. 

10. Ambrósio R, Jr., Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, et al. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. J Refract Surg. 2017;33(7):434-43. 

11. Sedaghat MR, Momeni-Moghaddam H, Ambrósio R, Jr., Heidari HR, Maddah N, Danesh Z, et al. Diagnostic Ability of Corneal Shape and Biomechanical Parameters for Detecting Frank Keratoconus. Cornea. 2018;37(8):1025-34. 

12. Kataria P, Padmanabhan P, Gopalakrishnan A, Padmanaban V, Mahadik S, Ambrósio R, Jr. Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg. 2019;45(3):328-36. 

13. Fraenkel D, Hamon L, Daas L, Flockerzi E, Suffo S, Eppig T, et al. Tomographically normal partner eye in very asymmetrical corneal ectasia: biomechanical analysis. Journal of Cataract & Refractive Surgery. 2021;47(3):366-72. 

14. Koc M, Aydemir E, Tekin K, Inanc M, Kosekahya P, Kiziltoprak H. Biomechanical Analysis of Subclinical Keratoconus With Normal Topographic, Topometric, and Tomographic Findings. J Refract Surg. 2019;35(4):247-52. 

15. Elham R, Jafarzadehpur E, Hashemi H, Amanzadeh K, Shokrollahzadeh F, Yekta A, et al. Keratoconus diagnosis using Corvis ST measured biomechanical parameters. Journal of Current Ophthalmology. 2017;29(3):175-81. 

16. Serdarogullari H, Tetikoglu M, Karahan H, Altin F, Elcioglu M. Prevalence of keratoconus and subclinical keratoconus in subjects with astigmatism using pentacam derived parameters. J Ophthalmic Vis Res. 2013;8(3):213-9. 

17. Shetty R, Rao H, Khamar P, Sainani K, Vunnava K, Jayadev C, et al. Keratoconus Screening Indices and Their Diagnostic Ability to Distinguish Normal From Ectatic Corneas. American Journal of Ophthalmology. 2017;181:140-8. 

18. Kreps EO, Jimenez-Garcia M, Issarti I, Claerhout I, Koppen C, Rozema JJ. Repeatability of the Pentacam HR in Various Grades of Keratoconus. Am J Ophthalmol. 2020;219:154-62. Page 14/17 

19. Read SA, Collins MJ. Diurnal variation of corneal shape and thickness. Optom Vis Sci. 2009;86(3):170-80. 

20. Ren S, Xu L, Fan Q, Gu Y, Yang K. Accuracy of new Corvis ST parameters for detecting subclinical and clinical keratoconus eyes in a Chinese population. Sci Rep. 2021;11(1):4962. 

21. Vinciguerra R, Ambrósio R, Jr., Elsheikh A, Roberts CJ, Lopes B, Morenghi E, et al. Detection of Keratoconus With a New Biomechanical Index. J Refract Surg. 2016;32(12):803-10. 

22. Liu Y, Zhang Y, Chen Y. Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients. BMC Ophthalmology. 2021;21(1):339. 

23. Bahar A, Pekel G. How Does Light Intensity of the Recording Room Affect the Evaluation of Lens and Corneal Clarity by Scheimpflug Tomography? Cornea. 2020;39(2):137-9. 

24. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837-45. 

25. Guo L-L, Tian L, Cao K, Li Y-X, Li N, Yang W-Q, et al. Comparison of the morphological and biomechanical characteristics of keratoconus, forme fruste keratoconus, and normal corneas. Seminars in Ophthalmology. 2021;36(8):671-8. 

26. Vinciguerra R, Ambrósio R, Roberts CJ, Azzolini C, Vinciguerra P. Biomechanical Characterization of Subclinical Keratoconus Without Topographic or Tomographic Abnormalities. Journal of Refractive Surgery. 2017;33(6):399-407. 

27. Heidari Z, Hashemi H, Mohammadpour M, Amanzadeh K, Fotouhi A. Evaluation of corneal topographic, tomographic and biomechanical indices for detecting clinical and subclinical keratoconus: a comprehensive three-device study. Int J Ophthalmol. 2021;14(2):228-39. 

28. Pérez-Rueda A, Jiménez-Rodríguez D, Castro-Luna G. Diagnosis of Subclinical Keratoconus with a Combined Model of Biomechanical and Topographic Parameters. Journal of Clinical Medicine. 2021;10(13):2746. 

29. Peris-Martínez C, Díez-Ajenjo MA, García-Domene MC, Pinazo-Durán MD, Luque-Cobija MJ, Del BueySayas M, et al. Evaluation of Intraocular Pressure and Other Biomechanical Parameters to Distinguish between Subclinical Keratoconus and Healthy Corneas. J Clin Med. 2021;10(9). 

30. Peña-García P, Peris-Martínez C, Abbouda A, Ruiz-Moreno JM. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech. 2016;49(3):353-63. 

31. Asroui L, Dagher SA, Elsheikh A, Lopes BT, Roberts CJ, Assouad M, et al. Biomechanical Evaluation of Topographically and Tomographically Normal Fellow Eyes of Patients With Keratoconus. Journal of Refractive Surgery. 2022;38(5):318-25. 

32. Liu Y, Zhang Y, Chen Y. Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients. BMC Ophthalmol. 2021;21(1):339. Page 15/17 

33. Koh S, Ambrósio R, Inoue R, Maeda N, Miki A, Nishida K. Detection of Subclinical Corneal Ectasia Using Corneal Tomographic and Biomechanical Assessments in a Japanese Population. Journal of Refractive Surgery. 2019;35(6):383-90. 

34. Chan TCY, Wang YM, Yu M, Jhanji V. Comparison of Corneal Tomography and a New Combined Tomographic Biomechanical Index in Subclinical Keratoconus. Journal of Refractive Surgery. 2018;34(9):616-21. 

35. Henriquez MA, Hadid M, Izquierdo L, Jr. A Systematic Review of Subclinical Keratoconus and Forme Fruste Keratoconus. J Refract Surg. 2020;36(4):270-9.

36. Smolin G: Dystrophies & Degenerations; The cornea scientific foundations & clinical practice, Boston, Little, Brown, 1987, Ed 2, pp:448-449.

37. Krachmer JH, Feder RS, Belin MW: Keratoconus and related noninflammatory corneal thinning

38. disorders. Surv Ophthalmol 28:293–322, 1984.

39. Maguire LJ, Bourne WM: corneal topography of early KC ; AJO 1989; 108(2) : 107-12

40. Maguire LJ, Lowry JC: Identifying progression of subclinical KC by serial topography analysis.,AJO 1991; 112(1): 41-5

41. Saragoussi JJ, Pouliquen YJ: Does the progressive increasing effect of Radial keratotomy (hyperopic shift) correlate with undetected early KC, J Refract Corneal Surg 1994; 10(1): 45

42. Ellis W: Radial keratotomy in a patient with KC. J Cataract Refract Surg. 1992; 18(4): 406-9.

43. Naoyuki Maeda, Stephen D. Klyce, Michael K. Smolek, and Hilary W. Thompson; Automated Keratoconus Screening With Corneal Topography Analysis; Invest Ophthalmol Vis Sci. 1994; 35:2749-275.

44. Rabinowiiz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Corneal Surg. 1989; 5:4*00-408.

45. keratoconus _ problem _ no _ problem .pdf , Accessed on 9 th September, 2010.

46., Accessed on 9 th September 2010.

47. Keratoconus with GP lenses by Louigiana sorbora ; Centre for contact lens research (CCLR) , school of optometry; pp 2

48. Jonas JB, Nangia V, Matin A, Kulkarni M, Bhojwani K. Prevalence and associations of keratoconus in rural maharashtra in central India: the central India eye and medical study.Am J Ophthalmol. 2009 Nov;148(5):760-5. Epub 2009 Aug 11.

49. Bruno Machado Fontes, R A junier, D Jardim, G C Vealrde, Walton Nose : Ability of corneal biomechanical matrics & anterior segment data in the differentiation of KC & Healthy corneas ; :Arq Bras Oftalmol. 2010 ; 73(4) : 333-7

50. D M Burns, F M Johnston, D G Frazer, C Patterson, A J Jackson : KC – an analysis of corneal asymmetry ; BJO 2004 ; 88 :1252-1255

51. Ariela Gordon-shaag, Michel Millodot, Reut Ifrah, Einet shneor : Aberrations & topography in Normal, Kc suspect & Keratoconic eyes Optometry & Vision Science , Vol 89, No. 4, April 2012, pp 1-8.


ebook Chapter Contributors

Current Advances in Keratoconus Imaging - 1

Shady T. Awwad and Lara Asroui

Tear Film and Ocular Surface in Keratoconus - 23

Samer Hamada and Artemis Matsou

The Role of Biomarkers in Keratoconus Pathogenesis

and Diagnosis - 61

Sharon D’Souza, Mor M. Dickman, and Rohit Shetty

The Potential Roles of Genetic Testing and Biomechanical

Evaluation in Keratoconus - 73

Abby Wilson, Larry DeDionisio, John Marshall, and Tara Moore

Crosslinking in Children and Down Syndrome Patients - 99

Robert Wisse and Daniel A. Godefrooij

Accelerated Crosslinking: The New Epithelium-Off - 119

Frederik Raiskup and Robert Herber

Enhanced Trans-Epithelial Accelerated Crosslinking Protocols:

The Way Out of Future CXL - 131

Cosimo Mazzotta, Adel Barbara, Alessandro Di Maggio,

and Pierpaolo Pintore

Corneal Cross-Linking at the Slit Lamp - 149

Emilio A. Torres-Netto, Mohamed Hosny, and Farhad Hafezi

Corneal Cross-Linking in Ultrathin Corneas - 159

Farhad Hafezi and Emilio A. Torres-Netto

Corneal Allogenic Intrastromal Ring Segments C.A.I.R.S - 167

Vaishnavi Ravishankar and Soosan Jacob


  • cornea
  • anterior eye
  • corneal dystrophy
  • dry eye
  • ocular surface
  • ocular imaging
  • contact lenses
  • contact lens complications
  • primary eye care




Natural history and predictors for progression in pediatric keratoconus

Rosalia Antunes-Foschini, Henrique Doná, Pedro Henrique Sant’Anna de Mello, Renato Bredariol Pereira, Isadora Mendes Marqueis, Eduardo Melani Rocha, Sidney Julio de Faria-e-Sousa & Gleici Castro Perdona 

Scientific Reports volume 13, Article number: 4940 (2023)

Antunes-Foschini, R., Doná, H., de Mello, P.H.S. et al. Natural history and predictors for progression in pediatric keratoconus. Sci Rep 13, 4940 (2023).

Author information

Authors and Affiliations

  1. Rabinowitz, Y. S. Keratoconus. Surv. Ophthalmol. 42(4), 297–319 (1998).

    Article CAS PubMed Google Scholar


  2. McGhee, C. N. J., Kim, B. Z. & Wilson, P. J. Contemporary treatment paradigms in keratoconus. Cornea 34, S16–S23 (2015).

    Article PubMed Google Scholar 

  3. Kennedy, R. H., Bourne, W. M. & Dyer, J. A. A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 101(3), 267–273 (1986).

    Article CAS PubMed Google Scholar 

  4. Chatzis, N. & Hafezi, F. Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen cross-linking in children and adolescents. J. Refract. Surg. 28(11), 753–758 (2012).

    Article PubMed Google Scholar 

  5. Fujimoto, H. et al. Quantitative evaluation of the natural progression of keratoconus using three-dimensional optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 57(9), OCT169–OCT175 (2016).

    Article PubMed Google Scholar 

  6. Hamilton, A., Wong, S., Carley, F., Chaudhry, N. & Biswas, S. Tomographic indices as possible risk factors for progression in pediatric keratoconus. J. AAPOS 20(6), 523–526 (2016).

    Article PubMed Google Scholar 

  7. Gomes, J. A. et al. Global consensus on keratoconus and ectatic diseases. Cornea 34(4), 359–369 (2015).

    Article PubMed Google Scholar 

  8. Larkin, D. F. P. et al. Effect of corneal cross-linking versus standard care on keratoconus progression in young patients: The KERALINK randomized controlled trial. Ophthalmology 128(11), 1516–1526 (2021).

    Article PubMed Google Scholar 

  9. Wollensak, G., Spoerl, E. & Seiler, T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 135(5), 620–627 (2003).

    Article CAS PubMed Google Scholar 

  10. El-Khoury, S. et al. Pediatric keratoconus in a tertiary referral center: Incidence, presentation, risk factors, and treatment. J. Refract. Surg. 32(8), 534–541 (2016).

    Article PubMed Google Scholar 

  11. Godefrooij, D. A., Soeters, N., Imhof, S. M. & Wisse, R. P. Corneal cross-linking for pediatric keratoconus: Long-term results. Cornea 35(7), 954–958 (2016).

    Article PubMed Google Scholar 

  12. Ucakhan, O. O., Bayraktutar, B. N. & Saglik, A. Pediatric corneal collagen cross-linking: Long-term follow-up of visual, refractive, and topographic outcomes. Cornea 35(2), 162–168 (2016).

    Article PubMed Google Scholar 

  13. Toprak, I., Yaylali, V. & Yildirim, C. Visual, topographic, and pachymetric effects of pediatric corneal collagen cross-linking. J. Pediatr. Ophthalmol. Strabismus 54(2), 84–89 (2017).

    Article PubMed Google Scholar 

  14. Knutsson, K. A. et al. Corneal collagen cross-linking in paediatric patients affected by keratoconus. Br. J. Ophthalmol. 102(2), 248–252 (2018).

    Article PubMed Google Scholar 

  15. Mazzotta, C. et al. Corneal collagen cross-linking with riboflavin and ultraviolet a light for pediatric keratoconus: Ten-year results. Cornea 37(5), 560–566 (2018).

    Article PubMed Google Scholar 

  16. Olivo-Payne, A. et al. Optimal management of pediatric keratoconus: Challenges and solutions. Clin. Ophthalmol. 13, 1183–1191 (2019).

    Article PubMed PubMed Central Google Scholar 

  17. Greenstein, S. A., Fry, K. L., Bhatt, J. & Hersh, P. S. Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic analysis. J. Cataract Refract. Surg. 36(12), 2105–2114 (2010).

    Article PubMed Google Scholar 

  18. Belin, M. W., Duncan, J., Ambrósio, R. Jr. & Gomes, J. A. P. A new tomographic method of staging/classifying keratoconus: The ABCD grading system. Int. J. Ectatic Corneal Dis. 4(3), 85–93 (2015).

    Google Scholar 

  19. R: A language and environment for statistical computing [computer program] (R Foundation for Statistical Computing, Viena, 2016).

  20. Oller, R. & Gomez, G. A generalized Fleming and Harrington’s class of tests for interval-censored data. Can. J. Stat. 40(3), 501–516 (2012).

    Article MathSciNet MATH Google Scholar 

  21. United States Crosslinking Study G et al. United States multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment. Ophthalmology 124(9), 1259–1270 (2017).

    Article Google Scholar 

  22. Wittig-Silva, C. et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: Three-year results. Ophthalmology 121(4), 812–821 (2014).

    Article PubMed Google Scholar 

  23. McAlinden, C., Khadka, J. & Pesudovs, K. A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR. Invest. Ophthalmol. Vis. Sci. 52(10), 7731–7737 (2011).

    Article PubMed Google Scholar 

  24. Bergin, C., Guber, I., Hashemi, K. & Majo, F. Tolerance and relative utility: Two proposed indices for comparing change in clinical measurement noise between different populations (Repeatability) or measurement methods (Agreement). Invest. Ophthalmol. Vis. Sci. 56(9), 5543–5547 (2015).

    Article PubMed Google Scholar 

  25. Hashemi, H., Yekta, A. & Khabazkhoob, M. Effect of keratoconus grades on repeatability of keratometry readings: Comparison of 5 devices. J. Cataract Refract. Surg. 41(5), 1065–1072 (2015).

    Article PubMed Google Scholar 

  26. Shetty, R. et al. Repeatability and agreement of three Scheimpflug-based imaging systems for measuring anterior segment parameters in keratoconus. Invest. Ophthalmol. Vis. Sci. 55(8), 5263–5268 (2014).

    Article PubMed Google Scholar 

  27. Kumar, M., Shetty, R., Jayadev, C. & Dutta, D. Comparability and repeatability of pachymetry in keratoconus using four noncontact techniques. Indian J. Ophthalmol. 63(9), 722–727 (2015).

    Article PubMed PubMed Central Google Scholar 

  28. Meyer, J. J., Gokul, A., Vellara, H. R., Prime, Z. & McGhee, C. N. Repeatability and agreement of Orbscan II, Pentacam HR, and Galilei tomography systems in corneas with keratoconus. Am. J. Ophthalmol. 175, 122–128 (2017).

    Article PubMed Google Scholar 

  29. Otchere, H. & Sorbara, L. Repeatability of topographic corneal thickness in keratoconus comparing Visante OCT and Oculus Pentacam HR((R)) topographer. Contact Lens Anterior Eye 40(4), 217–223 (2017).

    Article PubMed Google Scholar 

  30. de Luis, E. B., Escudero Argaluza, J., Pijoan Zubizarreta, J. I., Santamaria Carro, A. & Etxebarria, E. J. Evaluation of the reliability and repeatability of scheimpflug system measurement in keratoconus. Cornea 37(2), 177–181 (2018).

    Article Google Scholar 

  31. Kreps, E. O. et al. Repeatability of the pentacam HR in various grades of keratoconus. Am. J. Ophthalmol. 219, 154–162 (2020).

    Article PubMed Google Scholar 

  32. Sykakis, E. et al. Corneal collagen cross-linking for treating keratoconus. Cochrane Database Syst. Rev. 3, CD010621 (2015).

    Google Scholar 

  33. Ferdi, A. C. et al. Keratoconus natural progression: A systematic review and meta-analysis of 11 529 eyes. Ophthalmology 126(7), 935–945 (2019).

    Article PubMed Google Scholar 

  34. Lin, K. K. et al. Comparing the natural progression and clinical features of keratoconus between pediatric and adult patients. Sci. Rep. 12(1), 8278 (2022).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  35. Ihalainen, A. Clinical and epidemiological features of keratoconus genetic and external factors in the pathogenesis of the disease. Acta Ophthalmol. Suppl. 178, 1–64 (1986).

    CAS PubMed Google Scholar 

  36. Weed, K. H., MacEwen, C. J., Giles, T., Low, J. & McGhee, C. N. The Dundee University Scottish Keratoconus study: Demographics, corneal signs, associated diseases, and eye rubbing. Eye 22(4), 534–541 (2008).

    Article CAS PubMed Google Scholar 

  37. Zadnik, K. et al. Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. Invest. Ophthalmol. Vis. Sci. 39(13), 2537–2546 (1998).

    CAS PubMed Google Scholar 

  38. Rabinowitz, Y. S. The genetics of keratoconus. Ophthalmol. Clin. N. Am. 16(4), 607–620 (2003).

    Article Google Scholar 

  39. Tuft, S. J., Moodaley, L. C., Gregory, W. M., Davison, C. R. & Buckley, R. J. Prognostic factors for the progression of keratoconus. Ophthalmology 101(3), 439–447 (1994).

    Article CAS PubMed Google Scholar 

  40. Tellouck, J. et al. Evolution profiles of different corneal parameters in progressive keratoconus. Cornea 35(6), 807–813 (2016).

    Article PubMed Google Scholar 

  41. Meyer, J. J., Gokul, A., Vellara, H. R. & McGhee, C. N. J. Progression of keratoconus in children and adolescents. Br J Ophthalmol. (2021).

  42. Choi, J. A. & Kim, M. S. Progression of keratoconus by longitudinal assessment with corneal topography. Invest. Ophthalmol. Vis. Sci. 53(2), 927–935 (2012).

    Article PubMed Google Scholar 

  43. Or, L., Rozenberg, A., Abulafia, A., Avni, I. & Zadok, D. Corneal cross-linking in pediatric patients: Evaluating treated and untreated eyes-5-year follow-up results. Cornea 37(8), 1013–1017 (2018).

    Article PubMed Google Scholar 

  44. Hashemi, H., Heydarian, S., Hooshmand, E. et al. The prevalence and risk factors for keratoconus: A systematic review and meta-analysis. Cornea (2019).

  45. Nakao, G. et al. The characteristics and risk factors of very asymmetric keratoconus. Eye Contact Lens 47(9), 511–514 (2021).

    Article PubMed Google Scholar 

  46. McMonnies, C. W. & Boneham, G. C. Keratoconus, allergy, itch, eye-rubbing and hand-dominance. Clin. Exp. Optom. 86(6), 376–384 (2003).

    Article PubMed Google Scholar 

  47. Simantov, I. et al. Seven years follow-up of corneal cross-linking (CXL) in pediatric patients: Evaluation of treated and untreated eye. Eur. J. Ophthalmol. 32(3), 1482–1490 (2022).

    Article PubMed Google Scholar 

  48. Salman, A. G. Transepithelial corneal collagen crosslinking for progressive keratoconus in a pediatric age group. J. Cataract Refract. Surg. 39(8), 1164–1170 (2013).

    Article PubMed Google Scholar 

  49. Wittig-Silva, C. et al. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: Preliminary results. J. Refract. Surg. 24(7), S720-725 (2008).

    PubMed Google Scholar 

  50. Maile, H. P. et al. Personalized model to predict keratoconus progression from demographic, topographic, and genetic data. Am. J. Ophthalmol. 240, 321–329 (2022).

    Article PubMed Google Scholar 

Download references


The Foundation for the Support of Teaching, Research and Assistance:
The research received no external funding and external entities had no role in the design or conduct of the research.

Institutional Review Board Statement

The studies was conducted in accordance with the declaration
and approved by each of the Institutional Ethics Committees.

Informed Consent Statement
Informed consent was obtained from all subjects involved in the studies.

Conflicts of Interest
The authors declare no conflict of interest.

Corresponding authors

Data Availability Statement

The data presented in this studies are available on reasonable request from the corresponding authors.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

The articles and contributions made are free to republish to ensure quality information is available for all.

One thing you might not know about kcglobal is that we publish or reproduce under a “Creative Commons” license so anyone else too can further publish or reproduce the articles for free.

Why? Because we want quality, fact-based information to reach as many people as possible. We want our community's authors to have the largest possible audience to share their knowledge. And we want the industry's media to publish trusted content with high ethical standards. Giving highly focused articles to other publishers is one way we can contribute to a robust media, and that’s especially important given the current devastating landscape of cuts and closures.

You’ve probably read an article posted or auto-posted here already or elsewhere - not realising it was one from our community's (at the bottom it will often provide: The "source link" to where it was originally published or credit given to where it first appeared or where it was first published).

Our community's republication network delivers a massive readership of 26 million article views each month, and that’s on top of the 11.5 million readers who access our community's content directly.

We believe in experts. We believe knowledge must inform decisions.

We believe the free-flow of information is more important than clicks. Quality information shouldn’t be behind paywalls, locked away in ivory towers, or guarded by vested interests. It should be available to all.

When you support kcglobal, you’re investing in the provision of quality information for millions around the world. (And if you’d like to aid us it’s never too late to join up with us.)

Supplementary Information:

Rights and permissions

Open Access The provided articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit


KC– Keratoconus

HDOVPLP – History of Diminution of Vision Painless Progressive

HNB– History of Night Blindness

HA – History of Headache

SYSTEX – Systemic Examination

RE – Right Eye

LE – Left Eye

DVA– Distant Visual Acuity

VA – Visual Acuity

DVAWG – Distant Visual Acuity With Glasses

BSCVA– Best Spectacle Corrected Visual Acuity

DVAI - Distant Visual Acuity Improvement

SPH – Sphere

CYL – Cylinder

PGP – Present Glass Prescription

PHI– Pin Hole Improvement

AR – Automated Refraction

SE – Spherical Equivalent

K1 – Keratometry 1 (Horizontal keratometry)

K2 – Keratometry 2 (Vertical Keratometry)

CYL – Cylinder

BCVA – Best Corrected Visual Acuity

VKC – Vernal Keratoconjunctivitis

SL – Slit-lamp

IOP– Intra-ocular Pressure

DDO– Distant Direct Ophthalmoscopy

SimK1 – Simulated Keratometry (Steep meridian)

SimK2- Simulated Keratometry (Flat meridian)

CYL– Simulated Keratometric Cylinder (SimK1-SimK2)

SAI – Surface Asymmetry Index

DSI – Differential Sector Index

OSI – Opposite Sector Index

CSI – Central/Surround Index

IAI – Irregular Astigmatic Index

AA - Analysed Area

KPI – Keratoconus Prediction Index

DIAGN - Diagnosis

Disclaimer / Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of kcglobal and/or the editor(s). kcglobal and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.